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Abstract

Values of ID50 for a collection of structurally-related gallic acid derivatives have been employed to create a predictive
quantitative structure–activity relationship (QSAR) which links structure to values of analgesic activity. The QSAR model
developed has substantial predictive power for the design of novel gallic acid derivatives having improved analgesic potency.
© 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The ability to discover, or to design efficiently, novel,
patentable molecules that are potent specific inhibitors
of enzymes, or potent specific agonists or antagonists of
biological receptors, is of great importance. Many such
molecules contribute to the prevention of, or are used
as therapy for, human diseases [1].

Quantitative structure–activity relationships (QSAR)
have been employed — and continue to be developed
and employed — both to correlate information in
data sets and as a tool to facilitate, for example, the
discovery of new molecules with increased biological
potency. A very large number of such QSAR models
have been developed for an amazing variety of proper-
ties [2,3]. Recently, we have reported the development
of useful QSAR models for enzyme inhibition [1,4], and
analgesic activity [5].

As part of our efforts to create QSAR models that
show substantial predictive promise for the design of
new compounds with improved pharmacological activ-
ity, we have previously synthesized and evaluated the

analgesic activity of a large group of gallic acid deriva-
tives [6]. Among these are compounds which have
potencies in standard biological assays of analgesia
comparable to, or greater than, that of substances
employed in clinical medicine, such as aspirin and
acetaminophen. This communication reports the results
of a promising effort to create a QSAR model employ-
ing the structure/potency data collected for this series
of gallic acid derivatives.

2. Results

Structures of gallic acid derivatives employed in this
study and corresponding values of their analgesic activ-
ity are collected in Table 1. The data set to be modeled
includes 49 compounds that have an analgesic activity
spanning about two and a half orders of magnitude.
The group of gallic acid derivatives examined has mod-
erate structural diversity.

For statistical modeling of the values of log ID50, the
data set was divided into three arbitrary subsets, two of
which each contained sixteen and the third of which
contained seventeen compounds. The first subset con-
tained those compounds numbered 001, 004, 007,
010, . . . in Table 1; the second contained those com-
pounds numbered 002, 005, 008, 011, . . . , and so forth.
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Table 1
Measured, estimated, and predicted values of analgesic potency for a series of gallic acid derivatives

log ID50 log ID50Structure ID50 (mmol/kg) log ID50Comp. D estimated b D predicted c

estimated predictedmeasured a

001 30.4 1.48 1.51 1.50 −0.03 −0.02

242.0 2.38002 2.31 2.27 0.07 0.11

175.1003 2.24 2.22 2.21 0.02 0.03

190.6 2.28004 2.25 2.32 0.03 0.03

30.97 1.49 1.70 1.76 −0.21 −0.21005

223.84 2.35 2.26 2.07 0.09 0.28006

2.49 2.35 2.17007 0.14 0.32307

3.00 2.95 2.97 0.05 0.03999008

009 999 3.00 2.99 2.81 0.01 0.19

229.8 2.36 2.23 2.13 0.13 0.23010

1.46 1.63 1.56 −0.23011 −0.1028.7

1.86 1.95 1.86012 −0.09 073.45

1.95 2.04013 2.04 −0.09 −0.0989.42

1.66 1.65 1.64 0.0146.2 0.02014

1.63 1.56 1.59 0.07 0.04015 43.26

(Continued on next page)
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Table 1 (Continued)

ID50 (mmol/kg)Structure log ID50Comp. log ID50 log ID50 D predicted cD estimated b

measured a predictedestimated

39.48 1.60 1.48 1.47 0.12 0.13016

0.96 1.18 1.15017 −0.22 −0.1922.59

1.64 1.55 1.61 0.09018 0.0343.76

1.59 1.47 1.36019 0.12 0.2339.26

020 17.51 1.24 1.41 1.23 −0.17 0.01

17.96 1.25 1.31 1.26 −0.06 −0.01021

1.49 1.58 1.55022 −0.09 −0.0631.16

15.55 1.19 1.41 1.44 −0.22 −0.25023

1.30 1.46024 1.46 −0.16 −0.1620.15

15.14 1.18 1.35 1.39 −0.17 −0.21025

39.50 1.60 1.47 1.41 0.13 0.19026

1.03 1.08 0.98027 −0.05 0.0510.85

1.32 1.43 1.49 −0.11 −0.1721.05028

17.62 1.25 1.36 1.43 −0.11 −0.18029

1.10 1.32 1.38 −0.22 −0.2812.62030

(Continued on next page)
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Table 1 (Continued)

ID50 (mmol/kg)Structure log ID50Comp. log ID50 log ID50 D predicted cD estimated b

measured a predictedestimated

031 24.5 1.39 1.29 1.37 0.10 0.02

2.23 1.95 1.90032 0.28 0.33171.67

1.58 1.66 1.58 −0.08033 037.87

1.67 1.67034 1.51 0 0.1646.93

1.37 1.36 1.37 0.0123.60 0035

1.44 1.33 1.33 0.11 0.1127.79036

15.20 1.18 1.22 1.37 −0.04 −0.19037

1.46 1.59 1.59 −0.13 −0.13038 29.17

039 17.16 1.23 1.27 1.32 −0.04 −0.09

040 11.66 1.07 1.01 0.95 0.06 0.12

0.82 0.84 0.96041 −0.02 −0.146.63

1.55 1.35 1.27042 0.20 0.2835.50

1.06 1.10 1.11043 −0.05 −0.0511.46

1.10 1.10 1.23 012.73 −0.12044

1.05 1.11 1.04 −0.06 0.01045 11.24

(Continued on next page)



R. Krogh et al. / Il Farmaco 55 (2000) 730–735734

Table 1 (Continued)

Structure ID50 (mmol/kg) log ID50 log ID50log ID50Comp. D estimated b D predicted c

predictedestimatedmeasured a

1.15 1.06 1.09 0.09 0.0614.28046

4.90 0.69 0.91 0.91 −0.22 −0.22047

1.15 1.14 0.86048 0.01 0.2914.23

0.59 0.57 0.573.91 0.02049 0.02

a Averages of two estimates.
b The difference between logarithms of measured and estimated values.
c The difference between logarithms of measured and predicted values.

The property value modeled was the logarithm of the
analgesic potency. Three fractional QSAR modeling runs
were computed, each employing as the training set one
of the three possible combinations of two of the three
subsets. The remaining subset was, in each case, em-
ployed as the test set. Thus, either 32 or 33 compounds
were employed as training sets to predict values of ID50

for either 16 or 17 test compounds. At the completion
of the three modeling runs, values for analgesic activity
had been estimated twice for each compound as a
member of a training set and predicted once for each
compound as a member of a test set. The standard error
of the measured analgesic potencies is taken to be 90.20
logarithm units.

For each compound in the data set, measured, esti-
mated, and predicted values of logarithms of analgesic
potency are collected in Table 1. These values are
presented as averages of the two estimates and one single
prediction. The differences between the measured and
estimated or predicted values are also included in Table
1. Results of the modeling effort are presented graphi-
cally in Fig. 1 as a plot of the logarithms of the measured
values of analgesic potency against the corresponding
estimated and predicted values.

3. Discussion

The QSAR model created in this study is highly
satisfactory (see Table 1 and Fig. 1). The model correlates
the data very well: for all 49 compounds in the data set,
all estimates of analgesic potency for members of training
sets differ from measured values by less than 1.5 standard
deviations of the estimated experimental error (0.2 log
units). The model also predicts analgesic potency very

Fig. 1. Logarithms of measured values of analgesic potency plotted
against the logarithms of estimated (diamonds) and predicted (circles)
values.

well when compounds are members of test set: predic-
tions for only two compounds (007 and 032) out of the
49 differ from the measured value by more than 1.5
standard deviations of the estimated experimental error.
These two compounds fall close to this limit: 1.60
standard deviations for compound 007 and 1.65 standard
deviations for compound 032. There are no outliers.

In principle, this is a difficult data set to model
satisfactorily. Firstly, the data refer to an in vivo assay
of analgesic potency and therefore suffer from animal-to-
animal variability and, hence, a substantial experimental
error. Secondly, the mechanism of analgesia for the gallic
acid analogs is unknown; indeed, it is possible that there
is more than one mechanism. Thirdly, these compounds
are either esters, amides, or anhydrides of gallic acid.
As such, they are susceptible to enzymatic or non-enzy-
matic hydrolysis, yielding gallic acid, an active anal-
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gesic. Therefore, these compounds have analgesic activ-
ity in their own right (note that several are substantially
more potent than gallic acid itself) and additionally act
as prodrugs for gallic acid. The rate and extent of
hydrolysis to gallic acid may well differ from compound
to compound. Finally, the accessibility of each com-
pound to the site of analgesic activity may vary from
compound to compound.

Despite the challenges of this data set, the modeling
process has, as noted above, been quite successful. This
is the second example of successful QSAR modeling for
in vivo analgesic activity of a family of structurally-re-
lated compounds [5]. The QSAR model developed in
this work shows substantial promise in the prediction
of the analgesic potency of novel gallic acid analogs, as
we search for more potent compounds.

4. Experimental

The synthesis and characterization of all gallic acid
derivatives employed in this study have been previously
described, as have measures of their analgesic potency
in the murine writhing test [6].

Statistical modeling was carried out as previously
described [1,4,5,7]. A set of molecular descriptors was
calculated for a single optimized conformation of each
molecule in the data set. This set of descriptors em-
ployed in the modeling include those traditional 2D
and 3D QSAR descriptors, a set of quantum-mechani-
cal descriptors [9,10], a number of descriptors which
identify structural elements within each molecule, as
well as a collection of novel descriptors based on trans-
ferable atom equivalent (TAE) technology [8,11]. The
data set modeled was divided into a large number of
overlapping subsets, employing a mixture of regression
models algorithm [8]. Several linear subset QSAR mod-
els were constructed for each subset. Those subsets were
then qualified for their ability to generate QSAR mod-
els which predict the property value for molecules
outside the subset but within the training set to within
1–2 standard deviations of the experimental error of
measurements. Only those subsets passing this criterion
were retained. Partial least-squares (PLS) statistical
models were then developed and optimized for each
qualified subset. The final QSAR model employed in
this work contained several thousand qualified subsets,
each containing 3 to 5 subset QSAR models. Thus, the
final QSAR model contained approximately 10 000
subset QSAR models. Finally, the descriptors for each
of the molecules in the test set were compared with the
average of the descriptors for all molecules in each
subset. For those cases in which these descriptors for
the test set molecule and those in the subset are ade-
quately concordant (indicating that the structure/de-
scriptor space occupied by the test set molecules falls

within that spanned by the subset), the subset QSAR
models for that subset were employed to make predic-
tions for the property value of the test set molecule.
This procedure was continued until all subsets within
the final QSAR molecule have been so examined. Thus,
at the end of the procedure, each molecule in the test
set will have multiple predictions. The number of such
predictions varies from several hundred for some
molecules in test set to perhaps 10 for other molecules.
The reported predictions are the simple numerical aver-
age of these predictions.
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